Qun Shen
Cornell High Energy Synchrotron Source (CHESS) and Department of Materials Science and Engineering
Cornell University, Ithaca, New York 14853, USA

Collaborators
Stefan Kycia (CHESS),
Kit Umbach, So Tanaka, Brian Weselak, Jack Blakely (MSE, Cornell)
Jason Reed, Eric Tentarelli, Lester Eastman (EE, Cornell)

Hong Luo, Jacek Furdyna (U. Notre Dame)

Richard Mirin (NIST, Boulder)

Ulli Pietsch, Nora Darowski (U. Potsdam, Germany)
⇒ Overview of SR and CHESS

⇒ Why using SR for nanostructures, and types of information obtained

⇒ Systems: Si (001) nanostructures
SiO₂/Si (001) columns
• InGaAs/GaAs QWRs
 Self-assembled InGaAs QDs
• ZnMnTe/ZnTe epilayers

⇒ Recent works by other groups

⇒ Future Interests
Growth in Synchrotron Radiation Science

INSPEC: Synchrotron Radiation (not astronomy)

Protein Data Bank: Deposits / year

September 2001
Synchrotron Facilities

~ 70 storage-ring based synchrotron facilities worldwide

A. Hopkirk at Daresbury Laboratory, UK, http://srs.dl.ac.uk/SRWORLD/index.html
Cornell High Energy Synchrotron Source (CHESS)

- 6 beam lines, 12 stations
- 8 scientists, 19 support staff
- NSF funding $3M/year
- MacCHESS $1.8M/yr NIH
- No CATs / PRTs
- Cornell G-line

Cornell University
Ithaca, New York
High X-ray Flux from Wigglers

G-line Wiggler:
designed & fabricated in house by K.D. Finkelstein at CHESS
Usage at CHESS

CESR: 5.3 GeV, 350 mA

Year 2000
Running time: 171 days
Number of users: 594 users

Scientific Fields (2000)

- biology/biophys: 45%
- physics: 11%
- x-ray science: 14%
- materials science: 27%
- other: 3%

A1, F1, F2: protein crystallography
A2: high-energy diffraction, thin-film growth
B1: high pressure, energy-dispersive
B2: EXAFS, angle-dispersive high pressure
C1: diffraction physics
D1: SAXS, imaging
F3: general diffraction
G1: SAXS
G2: grazing incidence scattering
G3: thin-film growth
Structural Biology

Yonath et al., Weizmann Inst., Israel (2000)
Real-time Crystal Growth

Ion-assisted MOCVD growth of GaN on sapphire.
Headrick et al., PRB 58, 4818 (1998)
Time-Resolved X-ray Imaging

- Imaging of diesel fuel spray
- With μs time resolution
- Pixel Array Detector (PAD)
- Liquid-gas mixture core
- Ultrasonic shock wave
- Near-nozzle region imaging

Wang et al. (APS, 2001)
Gruner et al. (CHESS)
Study of Nanostructures

Nanostructures: 1-100 nm
- semiconductors
- magnetic
- organic polymers

Basic Information:
- Size
- Shape
- Internal structure (strain)
- Buried structure

InGaAs / GaAs

Si (001)

Ge / Si
Technical Challenges

Experimental Methods:

- TEM
- XRD

nondestructive

Technical challenges:

- Signal to background?
- Particle size broadening?
- Strain variation?
Use of Synchrotron Radiation

Advantages:

- **high intensity:** \(I_0 \sim 10^{11}-10^{13} \text{ ph/s/mm}^2 \)
- **narrow divergence:** \(\Delta \theta \sim 2-10 \mu \text{rad} \)
- **high coherence width:** \(L_{coh} = \lambda D/s \sim 10-100 \mu \text{m} \)
- **tunable wavelength:** element specific
Basic Concept in XRD

Size Effect:

$$\Delta Q \sim \frac{1}{L}$$

Real space

Reciprocal space

$$\Delta Q = \text{independent of } |Q|$$

Strain Effect:

$$\Delta Q = -|Q| \frac{\Delta a}{a}$$

$$\Delta Q = |Q| \Delta \theta$$

$$\Delta Q \propto |Q|$$
Advanced XRD Techniques

⇒ Reciprocal space mapping
⇒ Grazing-incidence diffraction
⇒ Coherent Grating diffraction
⇒ Crystal truncation rod (CTR)
Overhead Projector …..
Information that can be obtained ...

⇒ Correlation length / lateral periodicity

⇒ Size and shape information: width, height, side-wall slope, ...

⇒ Imperfections: inhomogeneities, defects, ...

⇒ Time-resolved: changes during annealing, ...

⇒ Superlattice orientation: w.r.t. substrate crystal lattice

⇒ Strain in nanostructures: average strain
 strain variation (gradient)
 longitudinal $\partial a_x/\partial x$
 transverse $\partial a_z/\partial x$
Oxidation of Si (001) Pillars

SiO₂ / Si (001)

Tensile strain in Si (001) pillars due to 6 nm thick SiO₂

⇒ Δa∥/a∥ = 4×10⁻⁴
Recent Work by Others
Kegel et al. PRL (2000)

Nanometer-Scale Resolution of Strain and Interdiffusion in Self-Assembled InAs/GaAs QDs
Recent Work by Others
Wiebach et al. PRB (2000)

Strain and Composition in SiGe Nanoscale Islands

\[I(q) \propto \sum_k \left| F_k(q) e^{i (r_k + u_k)} \right|^2 \]
Elastic Strain: \(\{ \sigma \} = \{ C \} \{ \varepsilon \} \)

Hook’s Law

- **External:**
 - external pressure
 - lattice mismatch

- **Intrinsic:**
 - microscopic nature
 - exchange striction
Future Interests

⇒ Nanoperiodic structures by strain-controlled etching
 Melissa Hines and Stephen Sass (Cornell)

⇒ Nanoscale magnetic domains of CMR materials
 Yuri Suzuki (MSE, Cornell)

⇒ Self-assembled organic nanostructures
 with Wang Chen et al. (Inst. Chem., Beijing)
X-ray Interactions with Matter

- **Absorption**
 - $E \rightarrow e^-$
 - => spectroscopy

- **Scattering**
 - $E, k \rightarrow E', k'$
 - => elastic $E' = E$
 - => inelastic $E' \neq E$

September 2001