Strain Effects in Thin Films and Progress in Reference-Beam Phasing

Qun Shen
Cornell High Energy Synchrotron Source (CHESS) and Department of Materials Science & Engineering, Cornell University

Direct measurements of a large number of Bragg reflection phases in protein crystallography experiment

- Intro to reference beam diffraction
- Experimental setup & procedures
- Strategies on using measured phases
- Summary

Interplay between strain & physical properties in thin films
=> semiconductor band gap
=> exchange striction
=> magnetic anisotropy

- Ave. strain & strain gradients
- Magnetic thin-film Fe/GaAs
- Conclusions
Typical Crystallography

Expression → Crystallization → Data collection → |F(H)| → Phasing

- SeMet substitution
- heavy-atom buffer
- heavy-atom soak

Incorporating heavy atoms into protein structures

|F(H)| = |F(H)|e^{-iα(H)}

α(H) = ??

anomalous signal from heavy-atoms

Structure
Phasing Proteins w/o Heavy Atoms?

Expression ➔ Crystallization ➔ Data collection ➔ $|F(H)| \& \alpha(H)$

⇒ Reference-beam diffraction ➔ Structure
(a) Conventional oscillation method

Reference Beam Diffraction Technique

$$\delta = \alpha_{H-G} + \alpha_{G} - \alpha_{H}$$

→ Triplet Phase

(b) Reference-beam diffraction
Reference-Beam Data Collection

RBD data set: \(I(hkl) \) vs. \(\theta - \theta_G \)

Analogy to MAD data set: \(I(hkl) \) vs. \(\lambda \)
Conventional 3-Beam Diffraction

- Tetragonal lysozyme
- Time-consuming: ~10 min per profile
- Difficult for protein crystallography
Special Kappa Diffractometer

- Compact 50° κ-design
- G-reflection alignment with κ-φ
- Oscillation axis ψ with DC motor control
- Easy incorporation into oscillation setup
Phase-Sensitive XRD Theory

Kinematic theory
- single scattering
- commonly used
- no phase sensitivity

Approximate theories
- double scattering
- triplet-phase sensitive
- easy for curve-fitting

Dynamical theory
- all scattering terms
- phase-sensitive
- only numerical calc.

Second-order Born Approximation (2nd BA):

\[
D = D^{(0)} + D^{(1)} + D^{(2)} + \ldots
\]

\[
I_H(\theta) = 1 + 2 \frac{F_{H-G}}{F_H} \sqrt{R_G(\theta) \cos[\delta + \nu_G(\theta)]}
\]

with \(R_G(\theta) = \text{reflectivity} \) and \(\nu_G(\theta) = \text{phase shift of } G \).

Expanded Distorted-Wave Approach (EDWA):
Shen (1999) PRL; Shen (2000) PRB.

\[
I_H(\eta_G) = 1 - \tau \sin \delta \frac{\sin^2 (A \eta_G)}{A \eta_G^2} + \frac{\tau}{\eta_G} \left(\cos \delta + \frac{\tau}{2 \eta_G} \right) \left(1 - \frac{\sin(2A \eta_G)}{2A \eta_G} \right)
\]

with \(\tau = |F_{H-G}/F_H|, A = \pi \Gamma |F_G| t/(\lambda \cos \theta_G) \) and \(A \eta_G = \pi (\theta - \theta_G) t/d \).

\(\Rightarrow \) takes into account phase-independent effect accurately.
Automatic Curve Fitting

\(\Rightarrow \) Distorted-wave approximation (EDWA) is very accurate for biological crystals

\(\Rightarrow \) Curve-fit to experimental data using EDWA, with 4 parameters

Comparison of EDWA with dynamical theory

- \(\delta = 90^\circ \)
- \(\delta = 0^\circ \)
- \(\delta = 180^\circ \)
- \(\delta = +90^\circ \)

\(A = 0.12 \)

\(\eta_G \)

Normalized Intensity

Phase \(\delta \)

Base \(I_0 \)

Amplitude \(p \)

Center \(\theta_0 \)

\(\Rightarrow \) So far PC-based program ORIGIN is used for automatic curve-fitting to obtain triplet-phase \(\delta \).
Experiment Example

Tetragonal lysozyme P4$_3$2$_1$2

- Room temperature measurements
- Reference reflection $G = (1,1,1)$
- Typical exposure ~15 sec for $\Delta \psi = 2^\circ$.
- Number of θ-steps 15 to 21
- Typical θ range ~ 0.05$^\circ$ to 0.1$^\circ$
- 90$^\circ$ rotation \Rightarrow 86% completeness
- Diffraction resolution to ~2.5 Å

- 14914 RBD profiles
- Total time ~ 12 hrs

\Rightarrow 14914 triplet phases
MOSFLM Indexing and Integration

- Indexing
- Integration
- Scale \((\text{no merge})\)
- Sort \(\Rightarrow I_H(\theta)\)
Typical Interference Profiles

P4₃2₁₂ lysozyme

All profiles shown from same oscillation series
Results: triplet-phase data set

- Error histogram for measured triplet-phase data set

 - Whole data set:
 - 14914 phases, $\Delta \delta_m = 61^\circ$

 - With rejection criteria based on goodness-of-fits parameters (σ, χ^2, F_{hg}):
 - 7360 phases, $\Delta \delta_m = 45^\circ$
Strategies on Using Measured Phases

RBD experiments ➔ measured triplet-phases: \(\delta = \alpha_{H-G} + \alpha_G - \alpha_H \)

⇒ How to deduce individual structure-factor phases: \(\alpha_H = ?? \)

- **Direct methods:**
 replace guesses based on probability with measured triplet phases

- **Other methods??**
Unique Recurrence Pattern in RBD

⇾ RBD geometry leads to a systematic recurrence pattern of individual phases:
 a) all triplets contain a common α_G
 b) α_H appears in exactly 2 triplets
 c) the two α_H-triplets are adjacent

⇾ Different from conventional 3-beam measurements

Conventional 3-beam:
\[
\begin{align*}
\delta_1 &= \alpha_{G1} + \alpha_{H1-G1} - \alpha_{H1} \\
\delta_2 &= \alpha_{G2} + \alpha_{H2-G2} - \alpha_{H2} \\
\delta_3 &= \alpha_{G3} + \alpha_{H3-G3} - \alpha_{H3} \\
\end{align*}
\]

N equations
~$3N$ unknowns

Reference-beam method:
\[
\begin{align*}
\delta_0 &= \alpha_G + \alpha_{H-G} - \alpha_H \\
\delta_1 &= \alpha_G + \alpha_H - \alpha_{H+G} \\
\delta_2 &= \alpha_G + \alpha_{H+G} - \alpha_{H+2G} \\
\end{align*}
\]

N equations
$N+2$ unknowns
Recursive RBD Phasing Algorithm

Program: RBD_Phasing
RBD_phasing Using Measured Phases

- 191 unique (hk0) phases plus G=(111) phase from PDB 193L as starting phases
- using measured data set of 7360 triplet phases with median phase error 45°
- obtained 1085 individual phases with mean phase error 66°
- calculated electron density map (z=0) of tetragonal lysozyme

Based on 7360 measured triplet-phases

Based on calculated triplet-phases
Reducing Number of Initial Phases

- Low-resolution phases from molecular envelope?
- Measurements of three RBD datasets with non-coplanar G's
- Use of symmetry equivalent indexing to effectively have three RBD datasets?
- In principle, only 4 initial phases are needed to solve a structure

\[H = n_1G_1 + n_2G_2 + n_3G_3 + H_0 \]
Inverse Beam Measurements

Reference-beam coupled Friedel pairs:

\[\text{H} / \text{G} / \text{H} \rightarrow \overline{\text{H}} / \overline{\text{G}} / \text{G} - \text{H} \]

(a) \((3,-2,4)/(2,3,0)\)
\[\delta_{\text{fit}} = -116^\circ \]

(b) \((-3,2,-4)/(-2,-3,0)\)
\[\delta_{\text{fit}} = 77^\circ \]
Summary on reference-beam phasing

Where we are now:

⇒ Experimental:
 • demonstrated RBD technique for practical triplet-phase measurements
 • dedicated \(\kappa \)-diffractometer
 • modified oscillation camera setup

⇒ Theoretical:
 • phase-sensitive diffraction theory
 • automatic fits to obtain \(\delta \)

⇒ Data reduction & usage:
 • tested existing crystallogr. software
 • developed automatic fitting routine
 • started new phasing algorithm

Where we are going:

⇒ Further developments:
 • automated alignment control
 • rejection criteria to select reliable measurements
 • dealing with simultaneous beams and mosaic spread

⇒ Strategies for using phases:
 • use with direct methods
 • recursive individual phases
 • \(\Delta I_{\pm H} \Rightarrow \) analogy to SAD?

⇒ Goal:
 • solve new protein structures
Acknowledgments

Andrew Stewart (CHESS)
Dan Pringle
Stefan Kycia
Jim LaIuppa

Rob Thorne (Cornell, Physics)
Ivan Dobrianov
Alexei Kisselev
Craig Caylor

Marian Szebenyi (MacCHESS)
Chris Heaton
Bill Miller

Jun Wang (BSRF)

Herbert Hauptman (HWI)
Chuck Weeks
Hongliang Xu

NSF DMR 97-13424
NIH GM-46733
Thin Films & Nanostructures

Nanostructures: 1-100 nm
- semiconductors
- magnetic
- organic polymers

Basic information:
- size
- shape -- morphology
- strain -- internal structure

Physical properties:
- semiconductor band gap
- growth kinetics
- phase transitions
- magnetization
- …..
Example: band gap in semiconductors

InGaAs QWR: $t = 10\text{nm}$

Reed, Tentarelli, Eastman et al. (1995)
Intrinsic and External Strain

Elastic Strain: \[\{\sigma\} = \{C\} \{\varepsilon\} \] Hook’s Law

⇒ External: external pressure
lattice mismatch

⇒ Intrinsic: microscopic nature
exchange striction

In general, strain information is not easily available from many surface probe (AFM, SEM, STM) measurements
Structural Characterization

Experimental Methods: TEM, XRD

Technical challenges:
- Signal to background?
- Particle size broadening?
- Strain variation?
Basic Concepts in XRD

Size Effect:
- Real space
- Reciprocal space
 \[\Delta Q \sim \frac{1}{L} \]
 \[\Delta Q = \text{independent of } |Q| \]

Strain Effect:
- \[\Delta Q = -|Q| \frac{\Delta a}{a} \]
- \[\Delta Q = |Q| \Delta \theta \]
- \[\Delta Q \propto |Q| \]
Advanced XRD Techniques

⇒ Reciprocal space mapping
⇒ Grazing-incidence diffraction
⇒ Coherent Grating diffraction
⇒ Crystal truncation rod (CTR)
Examples of Grating Diffraction

InGaAs QWR
/ GaAs (001)

Si (001) needles
Average Strain

Sample: ~0.5mm2 multiple regions w/ different QWRs
Strain Effects on Band Gap

Size-dependent strain in QWRs

Deformation potentials:

\[a = -9.016 \text{ eV} \]
\[b = -1.96 \text{ eV} \]

Band-gap change w.r.t. quantum well:

\[\Delta E = a(\varepsilon_{xx} + \varepsilon_{zz}) + b(\varepsilon_{zz} - \varepsilon_{xx}/2) \]

Shen et al. (1996) PRB 54, 16381.
Average Strain vs. Strain Gradient

(a) Without strain relaxation

(b) With uniform strain relaxation

(c) With lateral strain gradient
Strain Gradient Example

Shen & Kycia (1997)
PRB 55, 15791.
Longitudinal vs. Transverse Gradients

Longitudinal wave

Longitudinal Gradient :
\[\frac{\partial a_x}{\partial x} \]

Transverse wave

Transverse Gradient :
\[\frac{\partial a_z}{\partial x} \]

Shen & Kycia (1997)
PRB 55, 15791.
Transverse Strain Gradients
Simulations Compared with Experiments
Information that can be obtained from crystal gratings

=> Size and shape information:
 width, height, period,
 side-wall slope, ...

=> Imperfections:
 inhomogeneities, defects, ...

=> Time-resolved changes
 e.g. during oxidation, ...

=> Superlattice registry
 w.r.t. substrate lattice

=> Strain in nanostructures:
 average strain
 strain variation (gradient)
 => longitudinal $\partial a_x/\partial x$
 => transverse $\partial a_z/\partial x$
Anti-ferromagnetic Thin Film
\(\text{Zn}_{0.07}\text{Mn}_{0.93}\text{Te} / \text{ZnTe} \)

1 \(\mu \text{m} \)

\(\text{ZnMnTe: fcc} \)

\(\text{ZnTe} \)
Three Orthorhombic Domains

3. Same as Problem 2. At low temperatures (<60 K) the Zn_{0.07}Mn_{0.93}Te becomes antiferromagnetic, and the crystal lattice transforms into orthorhombic, resulting in 3 types of domains that co-exist in the sample. The orthorhombic distortion in each type of domains can be expressed by: \(\varepsilon = 7 \times 10^{-4} \)

\[
\begin{align*}
 a &\rightarrow a(1-\varepsilon), & b &\rightarrow b(1-\varepsilon), & c &\rightarrow c(1+\varepsilon), \\
 a &\rightarrow a(1-\varepsilon), & b &\rightarrow b(1+2.75\varepsilon), & c &\rightarrow c(1-2.75\varepsilon), \\
 a &\rightarrow a(1+2.75\varepsilon), & b &\rightarrow b(1-\varepsilon), & c &\rightarrow c(1-2.75\varepsilon),
\end{align*}
\]

for c-type, for b-type, for a-type.

(a) Repeat (d) in Problem 2. (Ignore the ZnTe).

Interfacial stress \(\Rightarrow \) Preferred c-type domain population 3:1:1
The exchange striction is the result of an energy balance between the magnetoelastic energy involving spatial derivative $\nabla J(r)$ of the exchange interaction [11,18]

$$U_m = -2 \sum_{i>j} \varepsilon_{\alpha\beta} x_{\alpha} \partial J(r_{ij})/\partial x_{\beta} (S_i \cdot S_j),$$

and the elastic energy of the crystal [1]

$$U_e = \frac{1}{2} C_{11} (\varepsilon_{xx}^2 + \varepsilon_{yy}^2 + \varepsilon_{zz}^2)$$

$$+ C_{12} (\varepsilon_{xx} \varepsilon_{yy} + \varepsilon_{yy} \varepsilon_{zz} + \varepsilon_{zz} \varepsilon_{xx}),$$

Fe Thin Film on GaAs (001)

Misfit = -1.4%
\(a_{\text{GaAs}} = 0.56537 \text{ nm} \)
\(a_{\text{Fe}} = 0.28664 \text{ nm} \)
Cube on cube epitaxy

Olivier Thomas
U. Marceille

In-plane uniaxial magnetic anisotropy below 5 nm

J. Krebs, B. Jonker, G. Prinz,
JAP 61 (1987) 2596

\(t_f = 1.7 \text{ nm: } [110] \text{ easy} \)
\(t_f = 80 \text{ nm: } <100> \text{ easy} \)
Magnetic Anisotropy

- Domain shape anisotropy
- Magnetoelastic coupling
- Magnetocrystalline anisotropy
- Interface-induced effect
Fe / GaAs (001) Samples

MBE: GaAs 500 nm buffer
As rich (2x4) surface
1.5 \times 10^{-10} \text{Torr}
Fe: 1 nm/min at RT
3 nm Al capping layer

Fe thickness
from 1.5 to 13 nm

[110]: defined as unit-cell doubling direction
X-ray Diffraction Study

CHESS F3: 8 keV

⇒ Out-of-plane reflections:
 (004) and (224)
 film thickness
 out-of-plane lattice const.
 separate Fe and GaAs peaks

⇒ In-plane reflections:
 (220), (400), ...
 in-plane lattice strain
 in-plane domain size & shape
 in-plane correlations
Out of Plane Scans

Data: s389_J
Model: Lor2AsymSinc
Equation: \(y = y_0 + \frac{A_0}{1 + \left(\frac{x-x_0}{w_0}\right)^2} \cdot \left(1 + \left(\frac{x-x_0}{w_0}\right)^2\right) + A_c \cdot \exp\left(-\left(\frac{x-x_c}{w_2}\right)^3 - \left(\frac{x-x_c}{w_1}\right)^2\right) \cdot \left(\frac{x-x_c}{w_c}\right)^2 \)

- \(y_0 \): 3 ± --
- \(A_0 \): 600000 ± --
- \(x_0 \): 3.9988 ± --
- \(w_0 \): 0.0065 ± --
- \(A_c \): 12000 ± --
- \(x_c \): 3.8885 ± --
- \(w_c \): 0.047 ± --
- \(w_1 \): 0.36 ± --
- \(w_2 \): 0.37 ± --

Intensity (cts/1.5sec)

Thomas, Shen, et al. (2002).

1.5 nm Fe on GaAs (001)

3.9 nm Fe on GaAs (001)
In-plane Map for $t = 1.5$ nm

MBE95: 1.5 nm
Fe/GaAs (001)
In-plane Map for $t = 13$ nm

MBE241: 13 nm
Fe/GaAs (001)
In-plane 4-scans

(220)
In-plane θ-2θ scans

$t = 1.5$ nm $t = 3.9$ nm $t = 13$ nm
Anisotropic Domain & Strain Relaxation

- Strain Relaxation $\Delta a/a$
 - $[110]$
 - $[110]$

- Domain Size (Å)
 - $L[-110]$
 - $L[110]$

Fe Film Thickness (Å)

Graphs showing the relationship between Fe film thickness and strain relaxation, as well as domain size for different crystallographic orientations.
Magnetic free energy density:

\[f_m = \frac{K_1}{4} \sin^2 2\phi + \frac{K_u}{t} \sin^2 \left(\phi - \frac{\pi}{4} \right) + \frac{B_2}{2} \varepsilon_6 \sin 2\phi \]

\(\phi \) = angle between magnetization and [100]

\(K_1 = 48 \text{ kJ m}^{-3} \) is the cubic anisotropy energy of Fe

\(B_2 = 7620 \text{ kJ m}^{-3} \) is the magneto-elastic coupling coefficient of Fe

\(\varepsilon_6 \) = shear strain measured in x-ray diffraction experiment

\(\Rightarrow \) additional \(K_u/t \) term that favors [110] easy: \(K_u = 1 \times 10^{-4} \text{ J m}^{-2} \)
Comparison with MOKE

(MOKE data from André Guivarch, Université de Rennes)

\[t = 1.5 \text{ nm} \]
\[t = 3.9 \text{ nm} \]
\[t = 13 \text{ nm} \]
Conclusions on Fe / GaAs

⇒ Considerable strain and shape anisotropies do exist in these Fe thin films

⇒ The interfacial effect, K_u / t term, is the principal contributor to the observed UMA for thin Fe films

⇒ The strain anisotropy is the main factor responsible for the reversal of UMA at thicker Fe films
Acknowledgments

Collaborators in Thin-film & Nanostructure Research

Stefan Kycia (CHESS / LNLS)
Kit Umbach, So Tanaka, Jack Blakely (MSE, Cornell)
Jason Reed, Eric Tentarelli, Lester Eastman (EE, Cornell)
Hong Luo, Jacek Furdyna (U. Notre Dame)
Richard Mirin (NIST, Boulder)
Ulli Pietsch, Nora Darowski (U. Potsdam, Germany)
Olivier Thomas (U. Aix-Marseille III, France)
André Guivarch (U. de Rennes, France)